Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
Mol Genet Metab ; 141(3): 108118, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244286

RESUMO

Biallelic pathogenic variants in neuroblastoma-amplified sequence (NBAS) cause a pleiotropic multisystem disorder. Three clinical subgroups have been defined correlating with the localisation of pathogenic variants in the NBAS gene: variants affecting the C-terminal region of NBAS result in SOPH syndrome (short stature, optic atrophy, Pelger-Huët anomaly), variants affecting the Sec 39 domain are associated with infantile liver failure syndrome type 2 (ILFS2) and variants affecting the ß-propeller domain give rise to a combined phenotype. However, there is still unexplained phenotypic diversity across the three subgroups, challenging the current concept of genotype-phenotype correlations in NBAS-associated disease. Therefore, besides examining the genetic influence, we aim to elucidate the potential impact of pre-symptomatic diagnosis, emergency management and other modifying variables on the clinical phenotype. We investigated genotype-phenotype correlations in individuals sharing the same genotypes (n = 30 individuals), and in those sharing the same missense variants with a loss-of-function variant in trans (n = 38 individuals). Effects of a pre-symptomatic diagnosis and emergency management on the severity of acute liver failure (ALF) episodes also were analysed, comparing liver function tests (ALAT, ASAT, INR) and mortality. A strong genotype-phenotype correlation was demonstrated in individuals sharing the same genotype; this was especially true for the ILFS2 subgroup. Genotype-phenotype correlation in patients sharing only one missense variant was still high, though at a lower level. Pre-symptomatic diagnosis in combination with an emergency management protocol leads to a trend of reduced severity of ALF. High genetic impact on clinical phenotype in NBAS-associated disease facilitates monitoring and management of affected patients sharing the same genotype. Pre-symptomatic diagnosis and an emergency management protocol do not prevent ALF but may reduce its clinical severity.


Assuntos
Falência Hepática Aguda , Neuroblastoma , Anomalia de Pelger-Huët , Humanos , Fenótipo , Anomalia de Pelger-Huët/complicações , Anomalia de Pelger-Huët/genética , Anomalia de Pelger-Huët/patologia , Falência Hepática Aguda/genética , Mutação de Sentido Incorreto , Neuroblastoma/complicações
2.
Clin Genet ; 105(2): 202-208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37830462

RESUMO

SAMD9, a ubiquitously expressed protein, is involved in several mechanisms, including endosome fusion, growth suppression and modulation of innate immune responses to stress and viral infections. While biallelic mutations in SAMD9 are linked to normophosphatemic familial tumoral calcinosis, heterozygous gain-of-function mutations in the same gene are responsible for MIRAGE, a multisystemic syndrome characterized by myelodysplasia, infection, restriction of growth, adrenal hypoplasia, genital phenotypes, and enteropathy. A two-and-a-half-year-old girl, from a consanguineous Lebanese family, was included in this study. She presents with pre- and post-natal growth retardation, recurrent fevers, persistent diarrhea, elevated CRP and intermittent hypoglycemia. Whole genome sequencing revealed a homozygous frameshift variant in SAMD9 (NM_017654.4: c.480_481del; p.Val162Ilefs*5) in the proband. Sanger sequencing confirms its segregation with the disease in the family, and immunoblotting showed that the detected variant abolishes SAMD9 expression in the patient. Our findings expand the clinical spectrum linked to SAMD9 and highlight the importance of investigating further cases with mutations in this gene, as this will pave the way towards the understanding of the pathways driving these diseases.


Assuntos
Mutação da Fase de Leitura , Síndromes Mielodisplásicas , Feminino , Humanos , Pré-Escolar , Mutação , Síndromes Mielodisplásicas/genética , Heterozigoto , Homozigoto , Peptídeos e Proteínas de Sinalização Intracelular/genética
3.
Clin Epigenetics ; 15(1): 186, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017502

RESUMO

BACKGROUND: Aging has been reported as a major risk factor for severe symptoms and higher mortality rates in COVID-19 patients. Molecular hallmarks such as epigenetic alterations and telomere attenuation reflect the biological process of aging. Epigenetic clocks have been shown to be valuable tools for measuring biological age in various tissues and samples. As such, these epigenetic clocks can determine accelerated biological aging and time-to-mortality across various tissues. Previous reports have shown accelerated biological aging and telomere attrition acceleration following SARS-CoV-2 infection. However, the effect of accelerated epigenetic aging on outcome (death/recovery) in COVID-19 patients with acute respiratory distress syndrome (ARDS) has not been well investigated. RESULTS: In this study, we measured DNA methylation age and telomere attrition in 87 severe COVID-19 cases with ARDS under mechanical ventilation. Furthermore, we compared dynamic changes in epigenetic aging across multiple time points until recovery or death. Epigenetic age was measured using the Horvath, Hannum, DNAm skin and blood, GrimAge, and PhenoAge clocks, whereas telomere length was calculated using the surrogate marker DNAmTL. Our analysis revealed significant accelerated epigenetic aging but no telomere attrition acceleration in severe COVID-19 cases. In addition, we observed epigenetic age deceleration at inclusion versus end of follow-up in recovered but not in deceased COVID-19 cases using certain clocks. When comparing dynamic changes in epigenetic age acceleration (EAA), we detected higher EAA using both the Horvath and PhenoAge clocks in deceased versus recovered patients. The DNAmTL measurements revealed telomere attrition acceleration in deceased COVID-19 patients between inclusion and end of follow-up and a significant change in dynamic telomere attrition acceleration when comparing patients who recovered versus those who died. CONCLUSIONS: EAA and telomere attrition acceleration were associated with treatment outcomes in hospitalized COVID-19 patients with ARDS. A better understanding of the long-term effects of EAA in COVID-19 patients and how they might contribute to long COVID symptoms in recovered individuals is urgently needed.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , COVID-19/genética , Síndrome Pós-COVID-19 Aguda , Metilação de DNA , SARS-CoV-2 , Hospitalização , Síndrome do Desconforto Respiratório/genética , Aceleração , Epigênese Genética
4.
Front Oncol ; 13: 1203483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538118

RESUMO

Background: Down Syndrome (DS) is the most common chromosome anomaly in humans and occurs due to an extra copy of chromosome 21. The malignancy profile in DS is unique, since DS patients have a low risk of developing solid tumors such as breast cancer however they are at higher risk of developing acute myeloid leukemia and acute lymphoblastic leukemia. Methods: In this study, we investigated DNA methylation signatures and epigenetic aging in DS individuals with and without breast cancer. We analyzed DNA methylation patterns in Trisomy 21 (T21) individuals without breast cancer (T21-BCF) and DS individuals with breast cancer (T21-BC), using the Infinium Methylation EPIC BeadChip array. Results: Our results revealed several differentially methylated sites and regions in the T21-BC patients that were associated with changes in gene expression. The differentially methylated CpG sites were enriched for processes related to serine-type peptidase activity, epithelial cell development, GTPase activity, bicellular tight junction, Ras protein signal transduction, etc. On the other hand, the epigenetic age acceleration analysis showed no difference between T21-BC and T21-BCF patients. Conclusions: This is the first study to investigate DNA methylation changes in Down syndrome women with and without breast cancer and it could help shed light on factors that protect against breast cancer in DS.

5.
Genes (Basel) ; 14(8)2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37628598

RESUMO

Intellectual disability (ID) is a prevalent neurodevelopmental disorder characterized by limitations in intellectual functioning and adaptive behavior. While the causes of ID are still largely unknown, it is believed to result from a combination of environmental exposures and genetic abnormalities. Recent advancements in genomic studies and clinical genetic testing have identified numerous genes associated with neurodevelopmental disorders (NDDs), including ID. One such gene is CHAMP1, which plays a role in chromosome alignment and has been linked to a specific type of NDD called CHAMP1 disease. This report presents the case of a 21-year-old Lebanese female patient with a de novo mutation in CHAMP1. In addition to ID and NDD, the patient exhibited various clinical features such as impaired language, dysmorphic features, macrocephaly, thoracic hyperkyphosis, decreased pain sensation, and metabolic syndrome. These findings expand the understanding of the clinical spectrum associated with CHAMP1 mutations and highlight the importance of comprehensive follow-up for improved prognosis. Overall, this case contributes to the knowledge of CHAMP1-related NDDs by describing additional clinical features associated with a CHAMP1 mutation. The findings underscore the need for accurate diagnosis, thorough follow-up, and personalized care for individuals with CHAMP1 mutations to optimize their prognosis.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Feminino , Adulto Jovem , Adulto , Seguimentos , Deficiência Intelectual/genética , Adaptação Psicológica , Cognição , Proteínas Cromossômicas não Histona , Fosfoproteínas
7.
Mol Syndromol ; 14(3): 219-224, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37323196

RESUMO

Introduction: Overgrowth syndromes are a heterogeneous group of genetic disorders characterized by excessive growth, often accompanied by additional clinical features, such as facial dysmorphism, hormonal imbalances, cognitive impairment, and increased risk for neoplasia. Moreno-Nishimura-Schmidt (M-N-S) overgrowth syndrome is a very rare overgrowth syndrome characterized by severe pre- and postnatal overgrowth, dysmorphic facial features, kyphoscoliosis, large hands and feet, inguinal hernia, and distinctive skeletal features. The clinical and radiological features of the disorder have been well delineated, yet its molecular pathogenesis remains unclear. Case Presentation: We report on a Lebanese boy with M-N-S syndrome, whose clinical manifestations were compared with those of previously reported 5 affected individuals. Whole-exome sequencing combined with comparative genome hybridization analysis failed to delineate the molecular basis of the phenotype. However, epigenetic studies revealed a different methylation status of several CpG sites between him and healthy controls, with methyltransferase activity showing the most significant enrichment. Conclusion: An additional case of M-N-S syndrome recapitulated the clinical and radiological manifestations described in the previous reports. The data in the epigenetic studies implicated that abnormal methylations might play an essential role in development of the disease phenotype. However, additional studies in a clinically homogeneous cohort of patients are crucial to confirm this hypothesis.

8.
Am J Hum Genet ; 110(7): 1068-1085, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352860

RESUMO

ERI1 is a 3'-to-5' exoribonuclease involved in RNA metabolic pathways including 5.8S rRNA processing and turnover of histone mRNAs. Its biological and medical significance remain unclear. Here, we uncover a phenotypic dichotomy associated with bi-allelic ERI1 variants by reporting eight affected individuals from seven unrelated families. A severe spondyloepimetaphyseal dysplasia (SEMD) was identified in five affected individuals with missense variants but not in those with bi-allelic null variants, who showed mild intellectual disability and digital anomalies. The ERI1 missense variants cause a loss of the exoribonuclease activity, leading to defective trimming of the 5.8S rRNA 3' end and a decreased degradation of replication-dependent histone mRNAs. Affected-individual-derived induced pluripotent stem cells (iPSCs) showed impaired in vitro chondrogenesis with downregulation of genes regulating skeletal patterning. Our study establishes an entity previously unreported in OMIM and provides a model showing a more severe effect of missense alleles than null alleles within recessive genotypes, suggesting a key role of ERI1-mediated RNA metabolism in human skeletal patterning and chondrogenesis.


Assuntos
Exorribonucleases , Histonas , Humanos , Exorribonucleases/genética , Histonas/genética , Mutação de Sentido Incorreto/genética , RNA Ribossômico 5,8S , RNA , RNA Mensageiro/genética
9.
Pediatr Dermatol ; 40(5): 960-961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37029088

RESUMO

To date, more than 15 genes have been linked to syndromic and non-syndromic hypotrichosis, among which the LSS gene encoding lanosterol synthase was recently linked to autosomal recessive isolated hypotrichosis. Here we report the case of a 6-year-old girl born to non-consanguineous Iraqi parents and presenting with sparse lanugo hair since birth on the scalp, eyelashes, and eyebrows. Whole exome sequencing followed by Sanger sequencing allowed the detection of two novel compound heterozygous variants in LSS (p.Ile323Thr and p.Gly600Val). Reporting and investigating further cases with LSS variants might help establishing a better genotype-phenotype correlation.


Assuntos
Hipotricose , Criança , Feminino , Humanos , Alopecia/genética , Sobrancelhas , Cabelo , Hipotricose/diagnóstico , Hipotricose/genética , Linhagem
10.
Clin Immunol ; 251: 109326, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37030525

RESUMO

Combined immunodeficiency diseases (CID) represent the most severe forms of inborn errors of immunity. Defective T cell development and/or function, leading to an impairment in adaptive immunity are responsible for these diseases. The DNA polymerase δ complex is important for genome duplication and maintenance and consists of the catalytic subunit POLD1, and the accessory subunits POLD2 and POLD3 which stabilizes the complex. Mutations in POLD1 and POLD2 have been recently shown to be associated with a syndromic CID characterized by T cell lymphopenia with or without intellectual deficiency and sensorineural hearing loss. Here we report a homozygous POLD3 variant (NM_006591.3; p.Ile10Thr) in a Lebanese patient, the product of a consanguineous family, presenting with a syndromic severe combined immunodeficiency (SCID) with neurodevelopmental delay and hearing loss. The homozygous POLD3Ile10Thr variant abolishes POLD3 as well as POLD1 and POLD2 expression. Our findings implicate POLD3 deficiency as a novel cause of syndromic SCID.


Assuntos
Perda Auditiva , Imunodeficiência Combinada Severa , Humanos , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Imunodeficiência Combinada Severa/complicações , Imunodeficiência Combinada Severa/genética , Mutação , Homozigoto , Linhagem
11.
Genes (Basel) ; 14(3)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36980870

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a complex developmental disability that impairs the social communication and interaction of affected individuals and leads to restricted or repetitive behaviors or interests. ASD is genetically heterogeneous, with inheritable and de novo genetic variants in more than hundreds of genes contributing to the disease. However, these account for only around 20% of cases, while the molecular basis of the majority of cases remains unelucidated as of yet. MATERIAL AND METHODS: Two unrelated Lebanese patients, a 7-year-old boy (patient A) and a 4-year-old boy (patient B), presenting with ASD were included in this study. Whole-exome sequencing (WES) was carried out for these patients to identify the molecular cause of their diseases. RESULTS: WES analysis revealed hemizygous variants in PCDH19 (NM_001184880.1) as being the candidate causative variants: p.Arg787Leu was detected in patient A and p.Asp1024Asn in patient B. PCDH19, located on chromosome X, encodes a membrane glycoprotein belonging to the protocadherin family. Heterozygous PCDH19 variants have been linked to epilepsy in females with mental retardation (EFMR), while mosaic PCDH19 mutations in males are responsible for treatment-resistant epilepsy presenting similarly to EFMR, with some reported cases of comorbid intellectual disability and autism. Interestingly, a hemizygous PCDH19 variant affecting the same amino acid that is altered in patient A was previously reported in a male patient with ASD. CONCLUSION: Here, we report hemizygous PCDH19 variants in two males with autism without epilepsy. Reporting further PCDH19 variants in male patients with ASD is important to assess the possible involvement of this gene in autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Protocaderinas , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Epilepsia/genética , Deficiência Intelectual/genética , Protocaderinas/genética
12.
Genes (Basel) ; 14(2)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36833424

RESUMO

Spondyloocular syndrome (SOS, OMIM # 605822) is a rare genetic disorder characterized by osseous and ocular manifestations, including generalized osteoporosis, multiple long bones fractures, platyspondyly, dense cataracts and retinal detachment, and dysmorphic facial features, with or without short stature, cardiopathy, hearing impairment, and intellectual disability. Biallelic mutations in the XYLT2 gene (OMIM * 608125), encoding the xylosyltransferase II, were shown to be responsible for this disease. To date, 22 cases with SOS have been described, with varying clinical presentations and a yet-to-be-established genotypic-phenotypic correlation. Two patients from a consanguineous Lebanese family that presented with SOS were included in this study. Whole exome sequencing revealed a novel homozygous nonsense mutation in XYLT2 (p.Tyr414*) in these patients. We review all previously reported cases with SOS, describe the second nonsense mutation in XYLT2, and contribute to a better delineation of the phenotypic spectrum of the disease.


Assuntos
Osteocondrodisplasias , Osteoporose , Humanos , Códon sem Sentido , Fenótipo , Osteocondrodisplasias/genética , Homozigoto , Osteoporose/genética , Transtornos da Visão
13.
Hum Mol Genet ; 32(11): 1826-1835, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-36715159

RESUMO

Berardinelli-Seip congenital lipodystrophy type 2 (CGL2) is a very rare human genetic disorder with potential significance to the understanding of the pathobiology of aging. CGL2 patients display characteristic progeroid features and suffer from type 2 diabetes, insulin resistance and fatty liver. In this study, we profiled genome-wide DNA methylation levels in CGL2 patients with BSCL2 mutations to study epigenetic age acceleration and DNA methylation alterations. This analysis revealed significant age acceleration in blood DNA of CGL2 patients using both first- and second-generation epigenetic clocks. We also observed a shortened lifespan of Caenorhabditis elegans following knockdown of the BSCL2 homolog seip-1 on a daf-16/forkhead box, class O mutant background. DNA methylation analysis revealed significant differentially methylated sites enriched for lyase activity, kinase regulator activity, protein kinase regulator activity and kinase activator activity. We could also observe significant hypomethylation in the promoter of the dual specificity phosphatase 22 gene when comparing CGL2 patients versus controls. We conclude that in line with the observed progeroid features, CGL2 patients exhibit significant epigenetic age acceleration and DNA methylation alterations that might affect pathways/genes of potential relevance to the disease.


Assuntos
Diabetes Mellitus Tipo 2 , Subunidades gama da Proteína de Ligação ao GTP , Lipodistrofia Generalizada Congênita , Lipodistrofia , Humanos , Lipodistrofia Generalizada Congênita/genética , Metilação de DNA/genética , Diabetes Mellitus Tipo 2/genética , Mutação , Envelhecimento/genética , Epigênese Genética , Lipodistrofia/genética
14.
Brain ; 146(5): 1844-1858, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36314052

RESUMO

Charcot-Marie-Tooth (CMT) disease is one of the most common inherited neurological disorders, affecting either axons from the motor and/or sensory neurons or Schwann cells of the peripheral nervous system (PNS) and caused by more than 100 genes. We previously identified mutations in FGD4 as responsible for CMT4H, an autosomal recessive demyelinating form of CMT disease. FGD4 encodes FRABIN, a GDP/GTP nucleotide exchange factor, particularly for the small GTPase Cdc42. Remarkably, nerves from patients with CMT4H display excessive redundant myelin figures called outfoldings that arise from focal hypermyelination, suggesting that FRABIN could play a role in the control of PNS myelination. To gain insights into the role of FGD4/FRABIN in Schwann cell myelination, we generated a knockout mouse model (Fgd4SC-/-), with conditional ablation of Fgd4 in Schwann cells. We show that the specific deletion of FRABIN in Schwann cells leads to aberrant myelination in vitro, in dorsal root ganglia neuron/Schwann cell co-cultures, as well as in vivo, in distal sciatic nerves from Fgd4SC-/- mice. We observed that those myelination defects are related to an upregulation of some interactors of the NRG1 type III/ERBB2/3 signalling pathway, which is known to ensure a proper level of myelination in the PNS. Based on a yeast two-hybrid screen, we identified SNX3 as a new partner of FRABIN, which is involved in the regulation of endocytic trafficking. Interestingly, we showed that the loss of FRABIN impairs endocytic trafficking, which may contribute to the defective NRG1 type III/ERBB2/3 signalling and myelination. Using RNA-Seq, in vitro, we identified new potential effectors of the deregulated pathways, such as ERBIN, RAB11FIP2 and MAF, thereby providing cues to understand how FRABIN contributes to proper ERBB2 trafficking or even myelin membrane addition through cholesterol synthesis. Finally, we showed that the re-establishment of proper levels of the NRG1 type III/ERBB2/3 pathway using niacin treatment reduces myelin outfoldings in nerves of CMT4H mice. Overall, our work reveals a new role of FRABIN in the regulation of NRG1 type III/ERBB2/3 NRG1signalling and myelination and opens future therapeutic strategies based on the modulation of the NRG1 type III/ERBB2/3 pathway to reduce CMT4H pathology and more generally other demyelinating types of CMT disease.


Assuntos
Doença de Charcot-Marie-Tooth , Animais , Camundongos , Doença de Charcot-Marie-Tooth/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos Knockout , Mutação , Neuregulina-1/metabolismo , Células de Schwann , Nervo Isquiático/patologia , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo
15.
Hepatology ; 77(2): 501-511, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35989577

RESUMO

BACKGROUND AND AIMS: Porto-sinusoidal vascular disorder (PSVD) is a group of liver vascular diseases featuring lesions encompassing the portal venules and sinusoids unaccompanied by cirrhosis, irrespective of the presence/absence of portal hypertension. It can occur secondary to coagulation disorders or insult by toxic agents. However, the cause of PSVD remains unknown in most cases. Hereditary cases of PSVD are exceptionally rare, but they are of particular interest and may unveil genetic alterations and molecular mechanisms associated with the disease. APPROACH AND RESULTS: We performed genome sequencing of four patients and two healthy individuals of a large multigenerational Lebanese family with PSVD and identified a heterozygous deleterious variant (c.547C>T, p.R183W) of FCH and double SH3 domains 1 ( FCHSD1 ), an uncharacterized gene, in patients. This variant segregated with the disease, and its pattern of inheritance was suggestive of autosomal dominant with variable expressivity. RNA structural modelling of human FCHSD1 suggests that the C-to-T substitution at position 547, corresponding to FCHSD1R183W , may increase both messenger RNA (mRNA) and protein stability and its interaction with MTOR-associated protein, LST8 homolog, a key protein of the mechanistic target of rapamycin (mTOR pathway). These predictions were substantiated by biochemical analyses, which showed that FCHSD1R183W induced high FCHSD1 mRNA stability, overexpression of FCHSD1 protein, and an increase in mTORC1 activation. This human FCHSD1 variant was introduced into mice through CRISPR/Cas9 genome editing. Nine out of the 15 mice carrying the human FCHSD1R183W variant mimicked the phenotype of human PSVD, including splenomegaly and enlarged portal vein. CONCLUSIONS: Aberrant FCHSD1 structure and function leads to mTOR pathway overactivation and may cause PSVD.


Assuntos
Hipertensão Portal , Doenças Vasculares , Humanos , Camundongos , Animais , Predisposição Genética para Doença , Família Estendida , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Hipertensão Portal/metabolismo , Genômica
16.
Nephron ; 147(3-4): 229-233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36215968

RESUMO

INTRODUCTION: Nephronophthisis (NPHP) is a group of autosomal recessive renal diseases characterized by a reduced ability of the kidneys to concentrate solutes, chronic tubulointerstitial nephritis, and cystic kidney disease. It represents the most common genetic cause of childhood renal failure. To date, around 20 different genes, encoding primary cilia proteins, have been linked to NPHP. These contribute to one-third of cases with NPHP while the majority of patients remain molecularly undiagnosed. MATERIALS AND METHODS: Whole exome sequencing (WES) was carried out on a 2-year-old Lebanese boy with infantile NPHP characterized by multicystic kidney dysplasia, kidney insufficiency, and enlarged kidneys in addition to chronic anemia. The candidate variant, detected by WES, was then tested in the patient and his parents by Sanger sequencing. Copy number variation (CNV) analysis was subsequently performed in the proband. RESULTS: Our studies enabled the detection of a heterozygous de novo variant in NEK8 (NM_178170: p.Arg45Trp) in the proband. CNV analysis excluded the presence of big deletions or insertions in this gene. CONCLUSION: Here we report a de novo heterozygous variant in the NEK8 gene in infantile NPHP. This variant was previously detected at a de novo state in a patient presenting with the same clinical features as the proband. This suggests that autosomal dominant forms of NEK8-linked nephropathies may exist. Reporting further patients with NEK8 mutations is essential to confirm these findings and assess whether dominant forms of the disease are restricted to a specific mutational spot or are linked to variants scattered throughout the NEK8 gene.


Assuntos
Doenças Renais Policísticas , Proteínas Quinases , Masculino , Humanos , Pré-Escolar , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Quinases Relacionadas a NIMA/genética , Variações do Número de Cópias de DNA , Doenças Renais Policísticas/genética , Mutação
17.
Am J Med Genet A ; 191(4): 923-929, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36565049

RESUMO

Split-hand/foot malformation (SHFM) with long-bone deficiency (SHFLD) is a rare condition characterized by SHFM associated with long-bone malformation usually involving the tibia. It includes three different types; SHFLD1 (MIM % 119,100), SHFLD2 (MIM % 610,685) and SHFLD3 (MIM # 612576). The latter was shown to be the most commonly reported with a duplication in the 17p13.1p13.3 locus that was narrowed down to the BHLHA9 gene. Here, we report a consanguineous Lebanese family with three members presenting with limb abnormalities including tibial hemimelia. One of these patients presented with additional bowing fibula and another with bilateral split hand. CGH array analysis followed by RQ-PCR allowed us to detect the first homozygous duplication on the short arm of chromosome 17p13.3 including the BHLHA9 gene and involved in SHFLD3. Interestingly, one patient with the homozygous duplicated region, carrying thus four BHLHA9 copies presented with long bone deficiency but no SHFM. The incomplete penetrance and the variable expressivity of the disease in this family as well as the presence of the BHLHA9 homozygous duplication rendered genetic counseling extremely challenging and preimplantation genetic diagnosis almost impossible.


Assuntos
Deformidades Congênitas da Mão , Deformidades Congênitas dos Membros , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Consanguinidade , Aconselhamento Genético , Deformidades Congênitas da Mão/genética , Deformidades Congênitas dos Membros/genética , Linhagem
18.
Mol Psychiatry ; 28(2): 668-697, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36385166

RESUMO

Missense and truncating variants in the X-chromosome-linked CLCN4 gene, resulting in reduced or complete loss-of-function (LOF) of the encoded chloride/proton exchanger ClC-4, were recently demonstrated to cause a neurocognitive phenotype in both males and females. Through international clinical matchmaking and interrogation of public variant databases we assembled a database of 90 rare CLCN4 missense variants in 90 families: 41 unique and 18 recurrent variants in 49 families. For 43 families, including 22 males and 33 females, we collated detailed clinical and segregation data. To confirm causality of variants and to obtain insight into disease mechanisms, we investigated the effect on electrophysiological properties of 59 of the variants in Xenopus oocytes using extended voltage and pH ranges. Detailed analyses revealed new pathophysiological mechanisms: 25% (15/59) of variants demonstrated LOF, characterized by a "shift" of the voltage-dependent activation to more positive voltages, and nine variants resulted in a toxic gain-of-function, associated with a disrupted gate allowing inward transport at negative voltages. Functional results were not always in line with in silico pathogenicity scores, highlighting the complexity of pathogenicity assessment for accurate genetic counselling. The complex neurocognitive and psychiatric manifestations of this condition, and hitherto under-recognized impacts on growth, gastrointestinal function, and motor control are discussed. Including published cases, we summarize features in 122 individuals from 67 families with CLCN4-related neurodevelopmental condition and suggest future research directions with the aim of improving the integrated care for individuals with this diagnosis.


Assuntos
Transtornos do Neurodesenvolvimento , Masculino , Feminino , Humanos , Transtornos do Neurodesenvolvimento/genética , Mutação de Sentido Incorreto , Genes Ligados ao Cromossomo X , Fenótipo , Canais de Cloreto/genética
19.
Genet Med ; 25(1): 49-62, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322151

RESUMO

PURPOSE: Pathogenic variants in genes involved in the epigenetic machinery are an emerging cause of neurodevelopment disorders (NDDs). Lysine-demethylase 2B (KDM2B) encodes an epigenetic regulator and mouse models suggest an important role during development. We set out to determine whether KDM2B variants are associated with NDD. METHODS: Through international collaborations, we collected data on individuals with heterozygous KDM2B variants. We applied methylation arrays on peripheral blood DNA samples to determine a KDM2B associated epigenetic signature. RESULTS: We recruited a total of 27 individuals with heterozygous variants in KDM2B. We present evidence, including a shared epigenetic signature, to support a pathogenic classification of 15 KDM2B variants and identify the CxxC domain as a mutational hotspot. Both loss-of-function and CxxC-domain missense variants present with a specific subepisignature. Moreover, the KDM2B episignature was identified in the context of a dual molecular diagnosis in multiple individuals. Our efforts resulted in a cohort of 21 individuals with heterozygous (likely) pathogenic variants. Individuals in this cohort present with developmental delay and/or intellectual disability; autism; attention deficit disorder/attention deficit hyperactivity disorder; congenital organ anomalies mainly of the heart, eyes, and urogenital system; and subtle facial dysmorphism. CONCLUSION: Pathogenic heterozygous variants in KDM2B are associated with NDD and a specific epigenetic signature detectable in peripheral blood.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Camundongos , Animais , Humanos , Metilação de DNA/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , DNA , Mutação
20.
JAMA Neurol ; 79(12): 1267-1276, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36315135

RESUMO

Importance: It is currently unknown how often and in which ways a genetic diagnosis given to a patient with epilepsy is associated with clinical management and outcomes. Objective: To evaluate how genetic diagnoses in patients with epilepsy are associated with clinical management and outcomes. Design, Setting, and Participants: This was a retrospective cross-sectional study of patients referred for multigene panel testing between March 18, 2016, and August 3, 2020, with outcomes reported between May and November 2020. The study setting included a commercial genetic testing laboratory and multicenter clinical practices. Patients with epilepsy, regardless of sociodemographic features, who received a pathogenic/likely pathogenic (P/LP) variant were included in the study. Case report forms were completed by all health care professionals. Exposures: Genetic test results. Main Outcomes and Measures: Clinical management changes after a genetic diagnosis (ie, 1 P/LP variant in autosomal dominant and X-linked diseases; 2 P/LP variants in autosomal recessive diseases) and subsequent patient outcomes as reported by health care professionals on case report forms. Results: Among 418 patients, median (IQR) age at the time of testing was 4 (1-10) years, with an age range of 0 to 52 years, and 53.8% (n = 225) were female individuals. The mean (SD) time from a genetic test order to case report form completion was 595 (368) days (range, 27-1673 days). A genetic diagnosis was associated with changes in clinical management for 208 patients (49.8%) and usually (81.7% of the time) within 3 months of receiving the result. The most common clinical management changes were the addition of a new medication (78 [21.7%]), the initiation of medication (51 [14.2%]), the referral of a patient to a specialist (48 [13.4%]), vigilance for subclinical or extraneurological disease features (46 [12.8%]), and the cessation of a medication (42 [11.7%]). Among 167 patients with follow-up clinical information available (mean [SD] time, 584 [365] days), 125 (74.9%) reported positive outcomes, 108 (64.7%) reported reduction or elimination of seizures, 37 (22.2%) had decreases in the severity of other clinical signs, and 11 (6.6%) had reduced medication adverse effects. A few patients reported worsening of outcomes, including a decline in their condition (20 [12.0%]), increased seizure frequency (6 [3.6%]), and adverse medication effects (3 [1.8%]). No clinical management changes were reported for 178 patients (42.6%). Conclusions and Relevance: Results of this cross-sectional study suggest that genetic testing of individuals with epilepsy may be materially associated with clinical decision-making and improved patient outcomes.


Assuntos
Epilepsia , Testes Genéticos , Humanos , Feminino , Recém-Nascido , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Masculino , Estudos Retrospectivos , Estudos Transversais , Testes Genéticos/métodos , Epilepsia/tratamento farmacológico , Epilepsia/genética , Convulsões/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...